CNS regeneration after chronic injury using a self-assembled nanomaterial and MEMRI for real-time in vivo monitoring.

نویسندگان

  • Yu-Xiang Liang
  • Sunny W H Cheung
  • Kevin C W Chan
  • Ed X Wu
  • David K C Tay
  • Rutledge G Ellis-Behnke
چکیده

UNLABELLED To speed up the process of central nervous system (CNS) recovery after injury, the need for real-time measurement of axon regeneration in vivo is essential to assess the extent of injury, as well as the optimal timing and delivery of therapeutics and rehabilitation. It was necessary to develop a chronic animal model with an in vivo measurement technique to provide a real-time monitoring and feedback system. Using the framework of the 4 P's of CNS regeneration (Preserve, Permit, Promote and Plasticity) as a guide, combined with noninvasive manganese-enhanced magnetic resonance imaging (MEMRI), we show a successful chronic injury model to measure CNS regeneration, combined with an in vivo measurement system to provide real-time feedback during every stage of the regeneration process. We also show that a chronic optic tract (OT) lesion is able to heal, and axons are able to regenerate, when treated with a self-assembling nanofiber peptide scaffold (SAPNS). FROM THE CLINICAL EDITOR The authors of this study demonstrate the development of a chronic injury model to measure CNS regeneration, combined with an in vivo measurement system to provide real-time feedback during every stage of the regeneration process. In addition, they determined that chronic optic tract lesions are able to heal with axonal regeneration when treated with a self-assembling nanofiber peptide scaffold (SAPNS).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CNS regeneration after chronic injury using a self-assembled nano material

To speed up the process of central nervous system (CNS) recovery after injury, the need for real-time measurement of axon regeneration in vivo is essential to assess the extent of injury, as well as the optimal timing and delivery of therapeutics and rehabilitation. It was necessary to develop a chronic animal model with an in vivo measurement technique to provide a real-time monitoring and fee...

متن کامل

Magnetic resonance imaging of the mouse visual pathway for in vivo studies of degeneration and regeneration in the CNS

Traditionally, depiction of isolated CNS fiber tracts is achieved by histological post mortem studies. As a tracer-dependent strategy, the calcium analog manganese has proved valuable for in vivo imaging of CNS trajectories, particularly in rats. However, adequate protocols in mice are still rare. To take advantage of the numerous genetic mouse mutants that are available to study axonal de- and...

متن کامل

Dose response and time course of manganese-enhanced magnetic resonance imaging for visual pathway tracing in vivo

Axonal tracing is useful for detecting optic nerve injury and regeneration, but many commonly used methods cannot be used to observe axoplasmic flow and synaptic transmission in vivo. Manganese (Mn(2+))-enhanced magnetic resonance imaging (MEMRI) can be used for in vivo longitudinal tracing of the visual pathway. Here, we explored the dose response and time course of an intravitreal injection o...

متن کامل

Effects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration

Introduction  Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective:  We hypothesi...

متن کامل

Age-Dependent Regeneration by Using Electromyographical Study Foliowing Sciatic Nerve Injury in Rat

Purpose: There are extensive evidences that show axonal processes of the nervous system (peripheral and/or central) may be degenerated after nerve injuries. Axonal regeneration is relation to various factors. In this investigation we decided to evaluate the effects of nerve regeneration age-dependent on injured rat sciatic nerv. Materials and Methods: For this study, the right sciatic nerve of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nanomedicine : nanotechnology, biology, and medicine

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2011